
Maps API for JavaScript
Migration Guide

Version 3.0.12.1

Maps API for JavaScript Migration Guide 2
► Contents

Contents

Legal Notices..3

Document Information.. 4

Chapter 1: Overview... 5
What Has Changed... 6

Benefits of Maps API 3.x...6

Chapter 2: Guide...8
Summary of Differences...9

Browser Support... 9

Loading API Features...10

Accessing HERE Services.. 11

Initializing the Map...12

Credentials... 13

Markers... 14

HERE Services..17

Working with HERE Services..17

Adding a Route... 19

Extended Functionality..20

Event Handling..22

User Interface... 24

Maps API for JavaScript Migration Guide 3
► Legal Notices

Legal Notices
© 2015 HERE. All rights reserved.

This material, including documentation and any related computer programs, is protected by

copyright controlled by HERE. All rights are reserved. Copying, including reproducing, storing,

adapting or translating, any or all of this material requires the prior written consent of HERE. This

material also contains confidential information, which may not be disclosed to others without the

prior written consent of HERE.

Trademark Acknowledgements

HERE and Nokia are trademarks or registered trademarks of Nokia Corporation.

Other product and company names mentioned herein may be trademarks or trade names of their

respective owners.

Disclaimer

This content is provided "as-is" and without warranties of any kind, either express or implied,

including, but not limited to, the implied warranties of merchantability, fitness for a particular

purpose, satisfactory quality and non-infringement. HERE does not warrant that the content is error

free and HERE does not warrant or make any representations regarding the quality, correctness,

accuracy, or reliability of the content. You should therefore verify any information contained in the

content before acting on it.

To the furthest extent permitted by law, under no circumstances, including without limitation the

negligence of HERE, shall HERE be liable for any damages, including, without limitation, direct, special,

indirect, punitive, consequential, exemplary and/ or incidental damages that result from the use or

application of this content, even if HERE or an authorized representative has been advised of the

possibility of such damages.

Maps API for JavaScript Migration Guide 4
► Document Information

Document Information

Product

 Name: Maps API for JavaScript

 Version: Version 3.0.12.1

Document

 Name: Maps API for JavaScript Migration Guide

 Id: bd92b62-1438172421

 Status: FINAL

 Date: 2015-Jul-29, 12:27 (GMT)

Maps API for JavaScript Migration Guide 5
► Overview

Chapter

1

Overview
Topics:

• What Has Changed

• Benefits of Maps API 3.x

This guide provides information on difference between version 2.x

of the HERE Maps API for JavaScript and version 3.x. The aim of

the guide is to facilitate migration of existing program code to the

latest version of the API.

The guide is intended exclusively for developers, who have

previously used version 2.x of the API.

Maps API for JavaScript Migration Guide 6
► Overview

What Has Changed
Version 3 of the HERE Maps API for JavaScript represents a major redesign and can be viewed as a

completely new API. While many of the core concepts will be familiar to users of the Maps API 2.x, the

changes affect almost all aspects of the API, including signatures and class structure.

Mobile Devices

The new JavaScript API brings a number of modifications that we were not able to implement in the

context of the JavaScript API 2.x.

The original Maps API for JavaScript targeted mainly desktop environments, catering for a wide

range of use cases from simple maps to fleet tracking applications. The redesign is a response to

the enormous increase in mobile device usage and the customer demand to run map applications on

those devices.

HTML5

Another factor is the HTML5 technology, which is now widely supported by most browsers and

environments: it has made large parts of the old API obsolete. HTML5 and related technologies (SVG,

CSS3, EcmaScript 5, etc.) allow us to reduce the code size of the API by removing normalization layers

and shims.

One API

Version 3.x brings together the Enterprise and Consumer versions of the JavaScript API in one API

for everyone, with all the features available to both the consumer-facing customers and enterprise

customers.

Benefits of Maps API 3.x
The new API:

• enables map application development across a wide range of browser environments – both
mobile and desktop

• offers one consolidated library comprising all features of the Enterprise Edition and the Standard
Edition

• takes full advantage of the latest browser technologies, enabling applications to tackle use cases
of arbitrary complexity

Maps API for JavaScript Migration Guide 7
► Overview

• is optimized for package size, faster load times and better execution performance

• is modular, allowing developers to load only the code the application requires

• offers full access to the HERE REST APIs including the Map Tile API, Geocoder API, Routing API,
Enterprise Routing API and Places API

• integrates StreetLevel Imagery for interactive 360° street panoramas

Maps API for JavaScript Migration Guide 8
► Guide

Chapter

2

Guide
Topics:

• Summary of Differences

• Browser Support

• Loading API Features

• Accessing HERE Services

• Initializing the Map

• Credentials

• Markers

• HERE Services

• Extended Functionality

The following articles summarize the differences between the two

versions of the Maps API for JavaScript and illustrate the migration

process through examples.

Maps API for JavaScript Migration Guide 9
► Guide

Summary of Differences
The table below shows a summary of the most important differences between the Maps API for

JavaScript 3.x and Maps API for JavaScript 2.x, focusing on key concepts. Furthermore, in the Maps

API for JavaScript 2.x, functional features were made available mainly though components and map

objects, whereas in Maps API for JavaScript 3.x, functional features are distributed across the core

module and extensions which do not need to be loaded unless your application requires them.

Table 1: Differences between 2.x and 3.x

Concept Here Maps API 2.x Here Maps API 3.x

Loading of API features Loaded by automatic feature loader Loaded as extension modules

Access to HERE Platform Services Implicit access through a manager Explicit access through a service

Map instance Created as a display (object) Created as a map (object)

Markers, icons and graphics Implemented as DOM elements Implemented as DOM and Bitmap

markers

Extended functionality Accessible through components Accessible through extension libraries

Events Supported as part of the map class Supported by the mapevents extension

UI controls Delivered as map components Delivered through the UI extension

Browser Support
Due to the fact that version 3.x of the API takes advantage of HTML5 technologies to provide better

performance, mobile device support and usability, it works only in browsers that support HTML5. The

Maps API for JavaScript 2.x did not require HTML5 and operated in older browsers, including Internet

Explorer 7 and 8.

Table 2: Browsers supported by the HERE Maps API for JavaScript

Browser Maps API 2.x Maps API 3.x

Internet Explorer (desktop) IE7+ IE9+, optimized for IE10+

Internet Explorer (Windows Phone) IE9+ IE9+, optimized for IE10+

Firefox (desktop) 3.6+ optimized for latest

Chrome (desktop) 12+ optimized for latest

Maps API for JavaScript Migration Guide 10
► Guide

Browser Maps API 2.x Maps API 3.x

Chrome (Android) Android 2.2+* Android 2.2+, optimized for Android 4.4

Safari (MacOSX) 5+ 6+, optimized for 7

Safari (iOS) iOS4+ iOS6+

Android default browser / WebView no support Android 2.2+

iOS WebView no support iOS 6+

Loading API Features
Version 2.x of the JavaScript API uses an automatic feature loading mechanism which – depending on

a number of parameters – downloads JavaScript files appropriate to the feature description and the

user's browser environment.

The new API does not include a feature loader, instead it is available as a set of modules that contain

feature implementations and can be loaded individually. For an overview of the available API modules

and their dependencies, please refer to the developer's guide.

This new approach offers a number of advantages compared to the old version of the API:

• Developers have complete control over the features they would like to include in the application.

• Developers are free to choose the mechanism that loads the API files (synchronously as script
tags, asynchronously, loading via require.js, etc).

• There is a clear mapping between the module files and the namespaces (for example, the module
mapsjs-mapevents.js adds the mapevents namespace).

Loading API 2.x

In version 2.x, it was enough to include the single API loader script jsl.js and specify the

required modules by modifying the URL:

<script src="http://js.api.here.com/se/2.5.4/jsl.js?with=maps,routing" type="text/
javascript" charset="utf-8"></script>

This script downloads a set of JavaScript files necessary to access the 'map' and 'routing' features,

eight files in all.

Loading API 3.x

Version 3.x, replaces the loader concept with explicit loading of the required API modules. The core

map rendering functionality is delivered by the core module (mapsjs-core.js). All other modules

Maps API for JavaScript Migration Guide 11
► Guide

extend the functionality of the core and you can choose which of them to load to implement your

application.

The following example loads the core module and then the service module (mapsjs-

service.js) to enable access to the HERE Platform services such as the HERE Map Tile API or the

HERE Routing API.

Note that because the service module depends on the core module, it must be loaded after core.

<script src="http://js.api.here.com/v3/3.0/mapsjs-core.js" type="text/javascript"
 charset="utf-8"></script>
<script src="http://js.api.here.com/v3/3.0/mapsjs-service.js" type="text/javascript"
 charset="utf-8"></script>

The above example illustrates the key principle that only the modules that you explicitly request are

downloaded and can be accessed by the application.

Accessing HERE Services
In version 3.x of the Maps API for JavaScript, the service module (mapsjs-service.js)

consolidates interfaces to all the HERE back-end services (REST APIs), offering the Platform class as

the common access point to services.

The Platform class holds the global settings for all the services the application may need and acts

as a factory for service stubs, mapping them directly to the appropriate HERE REST APIs. This makes

working with the services easy: the application deals only with the Platform object. By contrast,

version 2.x provided the Settings class with all the global configuration settings for the API and a

number of components and classes through which to access the services.

Accessing Services in 2.x

The entire API version 2.x was closely coupled with the HERE Service Platform, which resulted in the

distribution of service-related functionality in different parts of the API. Below is an example that

sets up access to Routing and the Geocoder in version 2.x – in both cases, the code uses a Manager

class in different namespaces:

// Set global settings for platform access
nokia.Settings.set("app_id", "{YOUR_APP_ID}");
nokia.Settings.set("app_code", "{YOUR_APP_CODE}");+
nokia.Settings.set("serviceMode", "cit");
nokia.Settings.set("secureConnection", "force");

var map = new nokia.maps.map.Display(document.getElementById('map-container'), {
 // Implicitly access the HERE Map Tile API:
 baseMapType: nokia.maps.map.Display.SATELLITE
});

// Implicitly access the HERE Routing API or the HERE Enterprise Routing API when

Maps API for JavaScript Migration Guide 12
► Guide

// using the Enterprise Edition of the API:
var router = new nokia.maps.routing.Manager();

// Implicitly access the HERE Geocoder API:
var geocoder = new nokia.maps.search.Manager();

Accessing Services in 3.x

In the new API, the code is clearly decoupled from the HERE Services. This introduces more clarity,

while at the same time providing a common and convenient way to communicate with the HERE

Service Platform and to use the service features easily and flexibly. The following example sets up

access to the Map Tile API, Routing and the Geocoder through an instance of the Platform class:

var platform = new H.service.Platform({
 app_id: '{YOUR_APP_ID}',
 app_code: '{YOUR_APP_CODE}',
 useCIT: true,
 useHTTPS: true
});

// Explicitly access the HERE Map Tile API:
var maptiler = platform.getMapTileService();

// Explicitly access the HERE Routing API:
var router = platform.getRoutingService();

// Explicitly access the HERE Enterprise Routing API.
var enterpriseRouter = platform.getEnterpriseRoutingService();

// Explicitly access the HERE Geocoder API:
var geocoder = platform.getGeocodingService();

Initializing the Map
Map initialization in version 3.x of the API is very similar to map initialization in version 2.x.

However, there are some small but fundamental differences between the version 2.x class

nokia.maps.map.Display and the class H.Map in version 3.x.

Map Initialization in 2.x

The following script shows map initialization in version 2.x of the API:

nokia.Settings.set("app_id", "{YOUR_APP_ID}");
nokia.Settings.set("app_code", "{YOUR_APP_CODE}");

var map = new nokia.maps.map.Display(document.getElementById('map-container'), {
 zoomLevel: 4,
 center: new nokia.maps.geo.Coordinate(-25.363882,131.044922)
});

Maps API for JavaScript Migration Guide 13
► Guide

Map Initialization in 3.x

The script below shows how to initialize a map in version 3.x:

var platform = new H.service.Platform({
 app_id: '{YOUR_APP_ID}',
 app_code: '{YOUR_APP_CODE}'
});
var defaultLayers = platform.createDefaultLayers();
var map = new H.Map(document.getElementById('map-container'), defaultLayers.normal.map, {
 zoom: 4,
 center: new H.geo.Point(-25.363882,131.044922)
});

The new API's Map constructor requires a base layer, here provided as defaultLayers.normalmap.

The default base layers were pre-initialized (static) properties in the old API, but pre-initialization is

no longer possible in version 3.x, because:

• the map rendering core and HERE Service Platform access are decoupled

• the HERE Map Tile API has a much larger selection of map types and variants than the old Maps

API for JavaScript

To provide convenient access to the basic map types, the Platform object allows you to retrieve

the default layers with one method call and you can then quickly select the map styles to set as base

layers on the map. For more details please refer to the developer's guide of the new HERE Maps API

for JavaScript (v3).

Credentials
The examples under Initializing the Map on page 12 reveal an important change in setting up

credentials brought in by version 3.x of the Maps API for JavaScript.

Setting Credentials in 2.x

The old version of the API used the global class named Settings and an application provided the

authentication and authorization credentials by calling set() on it:

nokia.Settings.set("app_id", "{YOUR_APP_ID}");
nokia.Settings.set("app_code", "{YOUR_APP_CODE}");

Setting Credentials in 3.x

In Maps API for JavaScript 3.x, the application must set the credentials on every extension that it

requires. As a rule, set the credentials when initializing the H.service.Platform object from

service extension, which enables to access to HERE services (Map Tiles, Search, Geocoder,

Maps API for JavaScript Migration Guide 14
► Guide

Routing, Places). However, the StreetLevel (pano) extension requires the credentials to be

set on the RenderEngine class as well. The following code sets the credentials on both the

service.Platform object and map.render.panorama.RenderEngine:

<!DOCTYPE html>
 <head>
 <script src="http://js.api.here.com/v3/3.0/mapsjs-core.js"></script>
 <script src="http://js.api.here.com/v3/3.0/mapsjs-pano.js"></script>
 <script src="http://js.api.here.com/v3/3.0/mapsjs-service.js"></script>
 <script>
 // Initialize platform object with credentials:
 var platform = new H.service.Platform({
 app_id: '{YOUR_APP_ID}',
 app_code: '{YOUR_APP_CODE}'
 });

 // Set credentials for street level:
 mapsjs.map.render.panorama.RenderEngine.configure('{YOUR_APP_ID}',
 '{YOUR_APP_CODE}', false);
 </script>
 </head>
 ...

Markers
The Maps API for JavaScript 2.x offered two Marker classes to show point objects on the map: the

StandardMarker, which was the default platform marker with a default icon, and Marker which

could be customized by the user.

The new API offers the Marker class, which behaves very much like Marker in version 2.x. The

main difference lies in the underlying rendering mechanism. While version 2.x renders each Marker

instance as a DOM node on top of the map canvas, the new API renders a Marker onto the map

canvas. In most circumstances, the two approaches produce indistinguishable results, but rendering

on the canvas can be much faster.

In addition to the Marker class, the new API includes a class named DomMarker, which allows you

explicitly to create markers as DOM elements on top of the canvas. Note that this does not replicate

the marker rendering mechanism from the older API. Rather, it is a way to give developers full control

over icons, and to support animated icons. Please refer to the developer's guide for additional

information on markers.

Creating a Marker in 2.x

Below is a simple example that uses version 2.x of the API to create a marker with a user-defined

icon:

var marker = new nokia.maps.map.Marker([52.51, 13.4], {
 icon: 'http://someurl.com/icon.png'
});

Maps API for JavaScript Migration Guide 15
► Guide

map.objects.add(marker);

Creating a Marker in 3.x

The current version of the API encourages the use of H.map.Icon and H.map.DomIcon objects to

create a visual representation of the marker. This allows applications to re-use the same icon object

with different markers:

var markerIcon = new H.map.Icon('http://someurl.com/icon.png');
var marker = new H.map.Marker({ lat: 52.51, lng: 13.4}, {
 icon: markerIcon
});
map.addObject(marker);

Icons and GFX

To support custom vector graphics as marker icons on modern as well as older browsers (such as

Internet Explorer 7), version 2.x of the Maps API offered the gfx namespace. It allowed for rendering

vector graphics independently of the underlying browser and supported tiny SVG.

The following code creates a marker with a custom icon based on SVG mark-up, using the old

JavaScript API. Note that the icon constructor (gfx.GraphicsImage) requires parsed SVG input.

var svgMarkup =
 '<svg width="33" height="33" xmlns="http://www.w3.org/2000/svg">' +
 '<circle stroke="black" fill="white" cx="16" cy="16" r="16" />' +
 '<text x="16" y="20" font-size="10pt" font-family="arial" ' +
 'font-weight="bold" text-anchor="middle" fill="black" ' +
 'textContent="Hi!">Hi!</text>' +
 '</svg>';
var svgParser = new nokia.maps.gfx.SvgParser();
var markerIcon = new nokia.maps.gfx.GraphicsImage(svgParser.parseSvg(svg));

var marker = new nokia.maps.map.Marker([52.51, 13.4], {
 icon: markerIcon
});
map.objects.add(marker);

All modern browsers support the SVG standard, making the old API's graphics normalization system

obsolete. The new API does not provide any mechanism to transfer SVG into another rendering back

end (such as VML or Canvas). Instead, it allows you to use SVG directly as content for an Icon or

DomIcon object.

The following code snippet uses the new API to create an icon directly from SVG and constructs a

marker:

var svgMarkup =
 '<svg width="33" height="33" xmlns="http://www.w3.org/2000/svg">' +
 '<circle stroke="black" fill="white" cx="16" cy="16" r="16" />' +
 '<text x="16" y="20" font-size="10pt" font-family="arial" ' +
 'font-weight="bold" text-anchor="middle" fill="black" ' +
 'textContent="Hi!">Hi!</text>' +
 '</svg>';

Maps API for JavaScript Migration Guide 16
► Guide

var markerIcon = new H.map.Icon(svgMarkup);
var marker = new H.map.Marker({ lat: 52.51, lng: 13.4}, {
 icon: markerIcon
});
map.addObject(marker);

Draggable Markers

In version 2.x of the API, it was possible to specify draggable as a parameter at marker initialization.

Dragging and visual feedback were implemented as part of the Marker object. The following code

demonstrates the creation of such a marker:

var marker = new nokia.maps.map.StandardMarker([52.51, 13.4], {
 draggable: true // Make the marker draggable
});

In the new version of the API, there is no default 'dragging' implementation for map objects in and

markers. This means that, you, the user of the Maps API, must decide whether to change the position

of a marker in response to drag events and implement the appropriate visual feedback.

To implement marker dragging, load the mapsjs-mapevents extension and set it up to enable

events on map objects, then set the 'draggable' property on the marker to make sure that the events

dragstart, drag and dragend are dispatched. Finally, define the event handlers that implement

the observable effects of dragging the marker. The code below creates a draggable marker and the

skeleton event handlers:

//setting up map and map object events
var mapEvents = new mapsjs.mapevents.MapEvents(map);

//creating marker and icon
var markerIcon = new H.map.Icon('http://someurl.com/icon.png');
var marker = new H.map.Marker({ lat: 52.51, lng: 13.4}, {
 icon: markerIcon
});

//marking marker as draggable
marker.draggable = true;
map.addObject(marker);

marker.addEventListener('dragstart', function() {
 //handle drag start here
});

marker.addEventListener('drag', function() {
 //handle drag here
});

marker.addEventListener('dragend', function() {
 //handle drag end here
});

To learn more about Marker and DomMarker in Maps API for JavaScript 3.x, please refer to the

developer's guide.

Maps API for JavaScript Migration Guide 17
► Guide

HERE Services
The following articles explain the differences between accessing and using HERE services in versions

2.x and 3.x of the Maps API for JavaScript.

Working with HERE Services
Maps API for JavaScript version 2.x provided access to back-end services such as Search or Routing

through manager objects, while version 3.x uses service objects. We explain the differences below.

Managers in 2.x

In the Maps API for JavaScript 2.x, accessing the HERE services was made possible by manager

objects. For example, nokia.maps.routing.Manager was responsible for providing access to a

back-end service and processing the response. The following code uses a search.Manager:

nokia.places.search.manager.geoCode({
 searchTerm: 'Invalidenstrasse 117 Berlin',
 onComplete: function(responseData, requestStatus) {
 //handling response
 }
});

The type of manager and the functionality it supported depended on the REST service and the Maps

API edition. For example, the nokia.maps.routing.Manager in the Standard Edition accessed

the HERE Routing API, but the same class in the Enterprise Edition retrieved routes from the HERE

Enterprise Routing API.

Some of the manager objects in version 2.x could alter the response data and provide additional data

structures, depending on the functionality used. Managers required callbacks to handle responses,

and, as a further variation, sometimes a callback was an observer for changes to the state property

as shown in the example below:

router = new nokia.maps.routing.Manager();
router.addObserver("state", function(router, key, value) {
 if (value === 'finished') {
 //handling response
 }
});
route.calculateRoute(waypointsList, modes);

Maps API for JavaScript Migration Guide 18
► Guide

Services in 3.x

The new Maps API introduces a consistent, flexible and easy to understand way to access HERE REST

APIs via service objects. A service object maps directly to a HERE REST APIs and expose its features.

You can retrieve a service object from a H.service.Platform instance as demonstrated by the

following code:

<script src="http://js.api.here.com/v3/3.0/mapsjs-service.js"></script>
<script>
 //initializing platform object with credentials
 var platform = new H.service.Platform({
 app_id: '{YOUR_APP_ID}',
 app_code: '{YOUR_APP_CODE}'
 });
 var placesService = platform.getPlacesService();
 var routingService = platform.getRoutingService();
</script>

Service objects work as direct connectors to their REST API counterparts. They provide methods

to perform REST API requests and the parameters to those methods map one-to-one to the REST

API request parameters. This direct access to the platform services allows for more complex and

sophisticated queries than was possible with version 2.x of the API.

The following code uses a placeService object to submit a search request and a

routingService object to request a route calculation:

placesService.search({
 'at': '52.5304417,13.4111201',
 'q': 'hotel',
}, function(serviceResponse) {
 //handle response
}, function() {
 //handle connection error
});

routingService.calculateRoute({
 'waypoint0': 'geo!52.5,13.4',
 'waypoint1': 'geo!52.5,13.45',
 'mode': 'fastest;car;traffic:disabled'
}, function(serviceResponse) {
 //handle response
}, function() {
 //handle connection error
});

Note also that in this example, both the HERE Routing API and the HERE Enterprise Routing API

are provided side by side to allow you to use the full feature set from both services, including, for

example, public transit routing (exclusive to the HERE Routing API) and isoline routing (exclusive to

the HERE Enterprise Routing API) in the same application.

Within the new Maps API for JavaScript, the response data structures are not augmented or modified

in any way. The results are passed to the response handlers as they are retrieved from the service.

Maps API for JavaScript Migration Guide 19
► Guide

Adding a Route
The Maps API for JavaScript 3.x does not modify data returned from the REST APIs nor does it create

data structures on top of the service response. Therefore, in some cases, there are extra steps

involved when an application must display the data. This is necessary, for example, when a route

retrieved from the HERE Routing API is to be shown on the map.

Adding a Route in 2.x

In version 2.x of the API, the nokia.maps.routing.component.RouteResultSet object

was used to create a map representation of the route. This object was responsible for creating a

container which held a polyline that could be added to the map to display the route. In addition,

an instance of nokia.maps.routing.WaypointParameterList had to be created to provide a

list of waypoints to the routing manager when requesting a route. This introduced additional data

structures which were strictly related to the routing service:

var router = new nokia.maps.routing.Manager(); // Create a route manager.
// Set a handler to dispaly the route:
router.addObserver("state", function (observedRouter, key, value) {
 if (value == "finished") {
 var routes = observedRouter.getRoutes();

 // Create the default map representation of the route:
 var mapRoute = new nokia.maps.routing.component.RouteResultSet(routes[0]).container;
 map.objects.add(mapRoute);

 // Zoom to the bounding box of the route:
 map.zoomTo(mapRoute.getBoundingBox(), false, "default");
 } else if (value == "failed") {
 alert("The routing request failed.");
 }
});

// Create waypoints:
var waypoints = new nokia.maps.routing.WaypointParameterList();
waypoints.addCoordinate(new nokia.maps.geo.Coordinate(52.516222633265954,
 13.3889009369434));
waypoints.addCoordinate(new nokia.maps.geo.Coordinate(52.51717584105763,
 13.395129026281722));

var modes = [{
 type: "shortest",
 transportModes: ["car"],
 options: "avoidTollroad",
 trafficMode: "default"
}];
router.calculateRoute(waypoints, modes);

Adding a Route in 3.x

The new version of the API introduces no additional data structures. Instead, the API user needs to

set the request parameters for the routing service method calculateRoute() as specified in the

Maps API for JavaScript Migration Guide 20
► Guide

Routing API documentation, and then create a Polyline object from the response returned by the

service. This is shown in the example below:

var routingService = platform.getRoutingService();
routingService.calculateRoute({
 waypoint0: 'geo!52.516222633265954,13.3889009369434',
 waypoint1: 'geo!52.51717584105763, 13.395129026281722',
 mode: "fastest;car;traffic:disabled",
 representation: 'display'
 }, function(result) {
 // Once a route object is returned, the application turns the shape of
 // the route into a polyline and adds a marker for the start and end points:
 var strip = new H.geo.Strip(),
 shape = result.response.route[0].shape,
 coords,
 i,
 l = shape.length;

 for(i = 0; i < l; i++) {
 coords = shape[i].split(',');
 strip.pushLatLngAlt(+coords[0], +coords[1]);
 }
 var polyline = new H.map.Polyline(strip, {
 style: {
 lineWidth: 5
 }
 });

 // Create an icon element for the marker:
 var startPosition = result.response.route[0].waypoint[0].mappedPosition;
 var startMarker = new H.map.Marker({
 lat: startPosition.latitude,
 lng: startPosition.longitude
 });

 var endPosition = result.response.route[0].waypoint[1].mappedPosition;
 var endMarker = new H.map.Marker({
 lat: endPosition.latitude,
 lng: endPosition.longitude
 });

 map.addObject(startMarker);
 map.addObject(endMarker);
 map.addObject(polyline);
 }, function() {
 // Code to handle a connection error here.
 });

Extended Functionality
Maps API for JavaScript version 2.x used a component model to provide map-centric functionality

extensions such as behavior or info bubbles. The HERE Maps API for JavaScript version 3.x no longer

makes use of the component model and instead relies on extension libraries to provide all map

functionality beyond pure rendering.

http://developer.here.com/rest-apis/documentation/routing

Maps API for JavaScript Migration Guide 21
► Guide

Components in 2.x

Components providing extended functionality were loaded by default as part of the API and were

available immediately after loading http://js.api.here.com/se/2.5.4/jsl.js.

The following example adds behavior and ZoomBar to the map, using version 2.x. The

code initializes the components nokia.maps.map.components.Behavior and

nokia.maps.map.components.ZoomBar and then passes them to the map object at initialization:

...
<script src="http://js.api.here.com/se/2.5.4/jsl.js" type="text/javascript"
 charset="utf-8"></script>
...
<script>
 var map = new nokia.maps.map.Display(
 document.getElementById("mapContainer"), {

 // List of components to be added to the map:
 components: [
 new nokia.maps.map.component.Behavior(),
 new nokia.maps.map.component.ZoomBar()
 zoomLevel: 10,
 center: [52.51, 13.4]
 }
);
</script>

Extensions in 3.x

If a 3.x application requires functionality additional to that provided by the core module, it must load

the appropriate extensions explicitly and individually – only those extensions whose functionality the

application needs.

An extension provides its own namespace and adds its functionality on top of the core.

To add Behavior and ZoomBar as in the 2.x example above, load the extensions mapsjs-

mapevents, which provides the events system and map behavior, and mapsjs-ui which provides

the default user interface. This is shown by the code below:

...
<!-- Include mapsjs core functionality -->
<script src="http://js.api.here.com/v3/3.0/mapsjs-core.js" type="text/javascript"
 charset="utf-8"></script>

<!-- Include mapsjs service extension -->
<script src="http://js.api.here.com/v3/3.0/mapsjs-core.js" type="text/javascript"
 charset="utf-8"></script>

<!-- Include mapsjs UI and mapevents extensions -->
<script src="http://js.api.here.com/v3/3.0/mapsjs-mapevents.js" type="text/javascript"
 charset="utf-8"></script>
<script src="http://js.api.here.com/v3/3.0/mapsjs-ui.js" type="text/javascript"
 charset="utf-8"></script>
...
<script>
 var map = new H.Map(document.getElementById('map-container'), defaultLayers.normal.map,
 {

Maps API for JavaScript Migration Guide 22
► Guide

 zoom: 4,
 center: new H.geo.Point(52.51, 13.4)
 });

 // Add the map events functionality:
 var mapEvents = new mapsjs.mapevents.MapEvents(map);

 // Add behavior (on top of map events):
 var behavior = new mapsjs.mapevents.Behavior(mapEvents);

 // Add the UI with just the zoom bar
 var ui = new mapsjs.ui.UI(map, {
 zoom: true
 });

</script>

Compared to 2.x, version 3.x does, in fact, require additional steps to set up extensions. However,

this offers greater flexibility to you as a developer, because all extensions are purely optional and –

as their name suggests – they extend (that is build on) the functionality of mapsjs-core (and/or of

any other extensions on which they depend). A further benefit of this architecture is that it allows you

to create your own extensions and to replace existing ones to meet specific requirements.

The following table summarizes the available extension modules and the functionality they provide.

Table 3: Extensions in Maps API version 3.x

Extension File Functionality

mapsjs-service.js Provides access to HERE platform (map tiles, REST APIs)

mapsjs-mapevents.js Implements map and map object events and behavior

mapsjs-ui.js Implements the default UI controls

mapsjs-pano.js Provides StreetLevel view functionality

mapsjs-clustering.js Implements clustering functionality

mapsjs-data.js Implements KML and GeoJSON import functionality

Event Handling
Maps API for Javascript version 3.x introduces a new event system. It is more streamlined than its 2.x

counterpart and an application using must load an extension.

Event Handling in 2.x

Version 2.x of the Maps API provided its own standardized event framework which could be used for

map and map objects in addition to any DOM elements available on the page. Every EventTarget

implemented the method addListener() and removeListener() to manage event handlers.

This event system supported mouse events and touch events (MS pointer events were mapped to

Maps API for JavaScript Migration Guide 23
► Guide

the corresponding touch events). The code below illustrates this, adding event listeners to the map, a

map marker and the map container.

// Add an event handler to the map:
map.addListener('click', function(e) {
 // Handle click
});

var marker = new jsl.map.Marker(map.center);
marker.addListener('mousedown', function(e) {
 // handle mousedown
});

var eventEl = new nokia.maps.dom.EventTarget(document.getElementById('mapContainer'));
eventEl.addListener('touchmove', function(e) {
 // handle touchmove
});

Event Handling in 3.x

In version 3.x of the API, the event system is provided via an extension. It must be explicitly loaded (if

it is required) and set up for the map object. The new event system works only for the map instance

and any map objects added to it, but cannot be applied to DOM elements.

Due to the extended support for mobile devices, the new event system does not provide as many

different events as the system in version 2.x, but it normalizes events (mouse, touch, pointer) from

different platforms in its own pointer events setup. It treats all native events as pointer events,

but you can distinguish between mouse and touch by examining the pointer's type property. The

following code uses version 3.x of the API to enable events and add event handlers to the map and a

marker:

// Set up events for the map:
var mapEvents = new H.mapevents.MapEvents(map);

// Add a tap listener and callback:
map.addEventListener('tap', function(e) {
 if (e.currentPointer.type === 'mouse') {
 // handle a click
 } else if (e.currentPointer.type = 'touch') {
 // handle a tap
 }
});

// Add a pointer down listener and callback:
marker = new H.map.Marker(map.getCenter());
marker.addEventListener('pointerdown', function(e) {
 if (e.currentPointer.type === 'mouse') {
 // handle mousedown
 } else if(e.currentPointer.type === 'touch') {
 // handle touchdown
 }
});

http://developer.here.com/

Maps API for JavaScript Migration Guide 24
► Guide

User Interface
Version 3.x of the Maps API for JavaScript uses an extension to provide user interface elements,

abandoning the component model of version 2.x. This affects also info bubbles, which belong to the

UI extension in version 3.x.

UI elements

In Maps API for JavaScript 2.x every UI element was a separate component. All the UI components

required by an application needed to be initialized and then passed to the map constructor along with

other components. This is shown in the example below:

var map = new nokia.maps.map.Display(
 document.getElementById("mapContainer"), {
 //list of components which will be added to the map
 components: [
 new jsl.map.component.ZoomBar(),
 new jsl.map.component.ScaleBar(),
 new jslocation.map.component.TypeSelector()
 zoomLevel: 10,
 center: [52.51, 13.4]
 }
);

In Maps API for JavaScript 3.x, all UI functionality is present only when the application loads the

mapsjs-ui extension. UI elements are no longer available as components, but they can be specified

when initializing the UI objects. The following code loads the user interface, using version 3.x of the

API:

var mapTypes = platform.createDefaultLayers();
var ui = new mapsjs.ui.UI(map, {
 zoom: true,
 scalebar: true,
 mapsettings: {
 entries: [
 {'name': 'Normal', 'mapType': mapTypes['normal']},
 {'name': 'Satellite', 'mapType': mapTypes['satellite']},
 {'name': 'Terrain', 'mapType': mapTypes['terrain']}
]
 }
});

Info Bubbles

In Maps API for JavaScript 2.x, a separate component provided infobubbles. The component was

added to the map and worked as a factory for placing the actual info bubbles on the map display. This

was consistent with the handling of all other UI elements.

Maps API for JavaScript Migration Guide 25
► Guide

The following code demonstrates how an info bubble was created and added to the map in version

2.x:

var infoBubbles = new nokia.maps.map.component.InfoBubbles();
var map = new nokia.maps.map.Display(mapContainer, {
 center: [52.51, 13.4],
 zoomLevel: 10,
 components: [
 //adding infobubbles component to the map
 infoBubbles,
 new nokia.maps.map.component.Behavior(),
 new nokia.maps.map.component.ZoomBar()
]
});
var bubble = infoBubbles.openBubble('the content of the bubble', map.center);

In Maps API for JavaScript 3.x, info bubbles are part of the mapsjs-ui extension and can be only

added to the map if the UI is initialized and set for the current map object:

// Add UI to the map object:
var ui = new mapsjs.ui.UI(map);

// Initialize infobubble
var bubble = new H.ui.InfoBubble(map.getCenter(), {
 content: 'Hello World!'
 });

// Add info bubble to the UI:
ui.addBubble(bubble);

	Contents
	Legal Notices
	Document Information
	Overview
	What Has Changed
	Benefits of Maps API 3.x

	Guide
	Summary of Differences
	Browser Support
	Loading API Features
	Accessing HERE Services
	Initializing the Map
	Credentials
	Markers
	HERE Services
	Working with HERE Services
	Adding a Route

	Extended Functionality
	Event Handling
	User Interface

